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Abstract 
One of the most significant zoonotic bacterial diseases is Staphylococcus aureus (S. aureus), which 
may infect humans and animals, including dairy cattle worldwide. One of the most issues and finan-
cial burdens facing the dairy industry is S. aureus caused bovine mastitis, which has a detrimental 
effect on food safety, production, and animal welfare. Furthermore, it is difficult to cure with con-
ventional medication due to its clever pathophysiology, which includes facultative intracellular para-
sitism, increasingly severe antibiotic resistance, and biofilm development. Therefore, the creation of 
nanoparticles is gaining momentum and becoming great instruments for overcoming the treatment 
challenge associated with S. aureus mastitis. In particular, inorganic nanoparticles, polymeric nano-
particles, solid lipid nanoparticles, nanogels, and liposomes seem to be particularly useful. This re-
view focuses on the step-by-step advancement and limitations of nanoparticles in augmenting thera-
py for S. aureus mastitis. The most effective way to prevent new infections is to minimize or elimi-
nate conditions that contribute to the spread of infection and conditions that allow bacteria to con-
taminate and penetrate the teat canals. First, the challenges of treating S. aureus with antimicrobial 
drugs are examined. Next, S. aureus mastitis is controlled. Furthermore, several dietary elements 
strengthen the animal's defenses against mastitis. Mastitis has decreased when the diet is supple-
mented with vitamins E and selenium, A and beta carotene, and copper and zinc components that are 
balanced to fulfill requirements. Second, the benefits of using nanoparticles to treat S. aureus masti-
tis are also outlined. These benefits include enhancing the intracellular penetration and accumulation 
of the medications that nanoparticles carry, lowering antimicrobial resistance, and avoiding the for-
mation of biofilms. Thirdly, a range of nanoparticle kinds are presented for the purpose of suppress-
ing S. aureus mastitis. Lastly, the challenges that still need to be overcome, as well as the potential 
applications of nanoparticles in the prevention of new infections and the management of S. aureus 
mastitis are covered. The readers will receive sufficient knowledge from this review of the difficul-
ties facing the nanosystem to enable them to create and develop more effective Nano formulations to 
combat S. aureus infections. 
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Introduction 
One of the most deadly illnesses affecting 
dairy herds globally is bovine mastitis, which 
is typically brought on by a variety of bacteria 
Ruegg, 2017; Tiwari et al., )2013). The most 
frequent pathogen among these bacteria is S. 
aureus, which is responsible for the most 
severe cases of mastitis Monistero et 
al., )2018), and also it cause reproductive 
issues, a sharp drop in milk revenue, and costs 
associated with culling infected animals, 
replacing tainted milk with more expensive 
veterinary treatment Botaro et al., )2015). S. 
aureus produces toxins in milk that have the 
potential to result in serious diseases Johler et 
al., )2013). While Kaczorektukowska et al., 
)2022) showed that Amoxicillin + Clavulonic 
acid and Gentamycin (100% each) were sensi-
tive to Staph aureus, oxytetracycline (98.18%) 
and Amoxicillin (89.09%) were resistant to S. 
aureus. On antibiotic-resistant S. aureus isolat-
ed from mastitic milk, Cuo-Nps and Ch-Nps 
have inhibition zones Orellano et al., )2021).   
Cuo-Nps and Ch-Nps exhibit antibacterial effi-
cacy against the isolated antibiotic-resistant S. 
aureus, which was isolated from mastitic bo-
vine milk and showed resistance to multiple 
antibiotics Hala et al., )2024). 
Moreover, it has been connected to the 
subclinical, recurring, and clinical forms of 
bovine mastitis. Their capacity to remain intra 
cellular result in reinfection Zhou et 
al., )2018). 
The use of antibiotics is one of the main meth-
ods for managing mastitis. The treatment bene-
fits are depends on severity of the condition, 
the medicine of choice, proper drugs use du 
Preez, )2000). Subsequently, they may revert 
to a more contagious wild-type phenotype, 
which increases the likelihood of further infec-
tions. Moreover, S. aureus develops a greater 
resistance to antibiotics when they are used 
often and for extended periods of time Szweda 
et al., )2014). In the last few years, concerns 
regarding treatment failure have received a lot 
of attention. Because of this, scientists have 
been working nonstop to develop new treat-
ment strategies Dehkordi et al., )2011). New 
role that nano carriers are playing in the man-
agement of cow mastitis and to help research-
ers understand how to shift their attention to 
the field of nano carriers in order to discover a 

novel approach to combat S. aureus-caused 
mastitis. 
 
S. aureus therapy difficulty   
The primary reasons for the treatment's failure 
are antimicrobial resistance and S. aureus 
ability to remain intracellularly within 
phagocytes. Numerous variables could be to 
blame for this, such as a decline in the rate at 
which routinely used antibiotics are retained in 
cells, a drop in the pace at which these drugs 
are absorbed intracellularly, or a decline in the 
effectiveness of these medications at the 
lysosomes' acidic pH. Acidic medications may 
also be ionic at neutral extracellular or 
cytoplasmic pH, which prevents them from 
dissolving across the lysosomal membrane. 
Antibacterial medication's activity is not 
always present in aqueous solutions due to all 
of these reasons. Consequently, in order to 
effectively treat S. aureus infections, more 
specific dose forms are required. If at all 
possible, these dosage forms should provide 
the following benefits: (1) broad phagocyte 
penetration and reserve within cells for an 
appropriate duration; (2) minimal or 
nonexistent metabolism within the cells; (3) 
increased activity against Staphylococci at an 
acidic pH; (4) distribution through the streak 
canal. How well antibiotics work to treat 
mastitis depends on a number of parameters, 
including their pharmacokinetics—the rate at 
which they are absorbed and distributed when 
administered intramarily, their penetration into 
milk when injected parenterally, and other 
considerations. Prescott et al. )2000) state that 
these properties are related to the kind of 
vehicle, organic bases given parenterally, even 
if the former's concentrations ionize in the 
latterless than those found in blood. 
Pharmacodynamics is yet another crucial 
element that must be considered. The 
antibiotics impede DNA synthesis, stop the 
formation of bacterial cell walls, and interfere 
with ribosome activity to stop protein 
synthesis, among other ways Normark & 
Normark, )2002). Positive therapy for an 
infected udder is challenging, if not 
impossible, because to the following reasons: 
certain bacteria can generate poisons and 
enzymes that damage udder tissue and 
facilitate the entry of germs; survival of 



65 

Animal Health  Research Journal Vol. 9, No. 1, September 2024                                                     pp. 63-78 

contenued undetected by neutrophils and 
preventing them from being phagocytosed; 
bacteria's survival and growth within the 
phagocytes; About half of the S. aureus strains 
that are isolated from sick cattle develop beta-
lactamases, microabscesses, and glandular 
tissue atrophy at the site of infection. All these 
variables hinder the entry of antibiotics into 
fibrous membranes. 
Therefore, antibiotic resistance in 
Staphylococci, especially S. aureus resistance 
to penicillin G, is one of the main problems 
with therapy Olsen et al., )2006). Coagulase-
negative staphylococci usually show higher 
resistance and the capacity to acquire multi-
resistance in comparison to S. aureus 
Pitk€al€a et al., )2004). According to Haveri 
et al. )2005), some researchers talked about the 
lack of correlation between the findings of 
susceptibility testing and the cure rates for 
mastitis.  
Once S. aureus attaches itself to host tissues or 
prosthetic materials, it can spread and persist in 
a number of ways. Other characteristics of S. 
aureus, such as the production of an anti-
phagocytic microcapsule and the creation of an 
abscess by the zwitterionic capsule, during 
infection, are essential in assisting the bacteria 
in avoiding human immunity O'Riordan & 
Lee, )2004); Foster, )2005). According to 
Stephan et al. )2001), Staphylococcus aureus 
has the ability to secrete both the extracellular 
adherent protein and the Staphylococci 
inhibitory protein, which can hinder neutrophil 
migration and chemotaxis release to the 
infection site. Furthermore, S. aureus generates 
leukocidins, which cause leukocytes to be 
destroyed by opening up cell membrane pores. 
S. aureus produces a variety of enzymes during 
infection, including lipases, elastases, and 
proteases, which change the bacteria's ability 
to assault, damage host tissues, and spread to 
new locations. 
Treatment is made more difficult by S. aureus 
intracellular persistence in macrophages and 
the mammary epithelium. Furthermore, S. 
aureus can thrive and dwell in unique cell 
compartments such as the cytosol and 
endosome, which makes it difficult to remove 
them from the body and creates a reservoir 
where infections can recur. In addition, S. 

aureus small-colony variations (SCVs) are 
another kind that contributes to recurrent and 
persistent infection. 
SCVs are often resistant to antibiotics and host 
defense systems after being able to "hide" in 
host cells in vitro; yet, they are changed to 
contagious type, which is likely to cause 
reinfection Zhou et al., )2018). 
For instance, it will be challenging to eradicate 
an infection without removing the prosthetic 
device if it is infected Arrecubieta et al., 
)2006). One essential aspect of S. aureus path-
ogenicity is its capacity to create biofilms, and 
it has been linked to a number of syndromes, 
including mastitis, because of its capacity to 
delay phagocytosis, induce persistent antibiotic 
resistance, and, depending on the disease pat-
tern, either increase or decrease inflammation 
Thurlow et al., )2011). The dynamic process 
of biofilm formation makes it possible for 
planktonic cells to separate and colonize vari-
ous surfaces after they quickly proliferated. 
This mechanism has a major impact on encour-
aging the microbial pathogen to exist in addi-
tional infection sites, which leads to the crea-
tion of new biofilms and the widespread spread 
of the infections. Recent research has demon-
strated that mice's immune responses to S. au-
reus in biofilm form, which is used to produce 
acute mastitis in experiments, are more robust 
than those to Gogoi-Tiwari et al. )2015) 
planktonic cultures Monistero et al., )2018). 
Recurrence of infection symptoms is caused by 
altered gene expression of adhesion molecules 
and toxins, as well as a quick multiplication 
that came after the separation process.  
Thus, the development of biofilms is a signifi-
cant contributor to the pathophysiology of S. 
aureus, and it is crucial to find alternative ther-
apies that specifically target this component. 
 
Benefits of using nanoparticles to treat S. 
aureus mastitis 
It is envisaged that a new dosage form called 
nanoparticles will be employed intrammary to 
achieve the desired results. 
Drug delivery methods using nanoparticles 
exhibit a variety of biological and functional 
characteristics Garg et al., )2015b; 2015c) 
To address the issues associated with 
conventional medication, they can be readily 
modified by adjusting the drug's dosage and 
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ratio as well as the components that are used in 
their manufacture, such as polymers, 
excipients, stabilizers, and others Garg et al., 
)2015d). 
 
Prevention of the growth of biofilms 
Because the nanomaterials prevent the growth 
of biofilms, they have a substantial impact on 
the management of S. aureus infections. The 
glycocalyx, which possesses an anionic charge, 
is the principal constituent of biofilms. This 
enables it to interact with nanoparticles that are 
positively charged and able to pierce the dense 
biofilm Kulshrestha et al., )2017). 
The gold nanoparticles dramatically decreased 
the amount of biofilm that S. aureus produced, 
according to Sathyanarayanan et al. )2013). 
Triclosan, as an antibacterial drug in solution, 
kills S. aureus only outside the biofilm, accord-
ing to  Liu, )2019). However, loading triclosan 
into a micellar nanocarrier makes it easier for 
staphylococcal biofilm to penetrate and kill 
bacteria inside the biofilm.  
 
-Improved parameters for intracellular de-
livery 
Drug's absorption, distribution within cells, 
and therapeutic effect are all impacted by the 
different transport pathways. The nanoparticles 
respond to changes in PH, temperature, redox, 
and other environmental stimuli by releasing 
their payload through pores in their mem-
branes. These nanoparticles stay intracellular 
for extended periods of time. In order to re-
lease the payload medicine at the appropriate 
location, we must synthesize on-demand re-
lease nanoparticles during the nanoparticle pro-
duction process. The size, form, and synthetic 
chemistry of the nanoparticles, among other 
physical attributes, influence how well they are 
transported within cells. 
The size of the nanoparticles has a big impact 
on how they behave in biological fluid and 
how much of them enter cells. It determines 
the nanoparticles' stability, toxicity, drug load-
ing and release, and in vivo bio-distribution. 
The advantages of submicron versus micron 
size have been extensively studied; in other 
words, little particles are more effective than 
large ones at transporting medications to loci 
that are infected. For example, Yuan et al. 

)2017) shown that silver nanoparticles with a 
size range of 10 nm to 50 nm can be used to 
effectively cure goat mastitis caused by S. au-
reus. Chithrani et al. )2006) reported that the 
maximum cellular absorption of 50 nm-sized 
silver nanoparticles was observed in adipose-
derived stem cells and mammalian cells Ko et 
al., )2015). Therefore, regulating the size of the 
nanoparticles is a viable strategy for intracellu-
lar drug delivery in the distinct S. aureus com-
partments. 
Their form affects the pharmacokinetics of the 
payload medicine, biological behavior, 
phagocytosis by macrophages, and cellular 
uptake of the nanoparticles.  
Variations in the charge of the nanoparticles 
affect the pattern of the endocytosis process. 
For example, the usage of positive or negative 
charge particles, such as carboxymethyl 
chitosan and chitosan hydrochloride, affects 
the cellular uptake of polymeric nanoparticles. 
In comparison to negative and neutral charge 
polymeric nanoparticles, positive charge 
nanoparticles have a higher rate of phagocytic 
uptake He et al., )2010). Positive charge 
nanoparticles are believed to have a 
nonspecific adherence to normal tissue, 
making it more difficult for them to reach the 
diseased area. In contrast, negative charge 
nanoparticles may be preferred for delivering 
the treatment deeper into the tissue Kim et al., 
)2010). Miao et al. )2018) state that in order to 
take advantage of the two opposing charges, 
we can create a type of nanoparticle that 
carries a positive charge in acidic 
inflammatory tissue and a negative charge in 
healthy tissue. 
Furthermore, the functionalization of the 
nanoparticles' surface with "PEG, poloxamer, 
poloxamine polymers, and other" prevents the 
particles from being phagocytosed because 
these polymers make the particles more 
dispersed and less prone to aggregation, 
absorption of the protein on their surface, and 
ionic strength Moghimi, )1999). 
Increased resistance to S. aureus small-colony 
variations (SCVs). 
Since S. aureus infections are hard to treat with 
antibiotics and to eradicate with the immune 
system, SCVs have a significant role in the 
persistence of S. aureus infections' resistance 
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to treatment. 
Because of this, a number of studies are 
attempting to use nanoparticles to increase the 
effectiveness of antibacterial medications 
against S. aureus SCV phenotypes. 
Mesoporous silica nanoparticles (MSNP) 
coated with rifampicin were employed by 
Subramaniam et al. )2019) as a nanocarrier 
technique to cure intracellular infection 
brought on by S. aureus SCVs. Because MSNP 
of two sizes, 40 nm and 100 nm, loaded with 
rifampicin increased the intracellular uptake of 
rifampicin by RAW 264.7 macrophages 
infected with S. aureus SCVs, more 
bactericidal action was demonstrated compared 
with rifampicin alone.  
 
The development of various nanoparticle 
delivery methods to improve treatment for 
S. aureus infections. 
It has been proven by multiple researchers that 
a variety of nanoparticles, both organic and 
inorganic, may have been employed in medical 
studies, particularly for illnesses related to cow 
mastitis. Nanoparticles can prevent the 
development of resistance to antibiotics 
through a variety of mechanisms, including 
killing bacteria, enhancing the effectiveness of 
currently available antibiotics by preventing 
their detection or degradation, and enabling 
targeted drug delivery to microorganisms so 
they can use the lowest concentration possible 
Wong et al., )2013). Moreover, impeding 
colonization, biofilm formation, and bacterial 
adherence. 
Certain nanocarriers can be conjugated or com-
bined with a variety of antibacterial drugs to 
enhance their pharmacological activity against 
susceptible and resistant S. aureus. Therefore, 
medication delivery using nanoparticles is 
thought to be the best method for eliminating 
S. aureus infections. Additionally, this may 
lead to effective action against microbes. It is 
possible to boost both the intracellular concen-
tration of antimicrobial medications and the 
efficacy of phagocytosis by adding specific 
macrophage ligands to the nanoparticles Hua 
et al., )2014).  
 
 
 

Liposomes 
Nigatu et al. )2018) noted that liposomes may 
be modified to discharge the drug load at the 
desired site in reaction to the 39ºC temperature 
of the inflammatory area. Through modifica-
tions to the drug's pharmacokinetics and bio-
distribution, the liposomes enhance pharmaco-
logical efficacy while lowering toxicity. Alt-
hough the stability of the lipid vesicles is lim-
ited due to their decreasing shelf life, they are 
safe to provide to youngsters as well. Further-
more, as mentioned by Gabizon et al. )2006) 
and Allen and Martin )2004), its manufactur-
ing is intricate and time-consuming. 
 
Polymeric nanoparticles 
One of the most effective nanoparticle 
therapies now being investigated as a potential 
delivery system for antibiotics is polymeric 
nanoparticles. Block copolymers, which 
contain two or more highly hydrophobic 
polymer chains, are used in the self-assembly 
process to produce polymeric nanoparticles, 
which are composed of (biocompatible and 
biodegradable) polymers. 
Moreover, hydrophilic or hydrophobic 
medicinal compounds as well as 
macromolecules like peptides, proteins, and 
nucleic acids have been created to encase them 
in polymeric nanoparticles Wang et al., 
)2012). Because of its various benefits, such as 
its low cost, nontoxicity, biodegradability, and 
biocompatibility, chitosan is used as a drug 
delivery vehicle. Chakraborty et al. )2010) 
reported that chitosan nanoparticles loaded 
with vancomycin and tagged with folic acid 
improved the vancomycin's transport across 
bacterial cell membranes, leading to a stronger 
bactericidal effect against vancomycin-
resistant S. aureus. Additionally, chitosan 
nanoparticles loaded with tetracycline stopped 
S. aureus from penetrating cells, while chitosan 
nanoparticles loaded with Bacillus natto 
stopped biofilm development Maya et al., 
)2012); Jiang et al., )2017). PLGA (poly-lactic
-co-glycolic acid) nanoparticles loaded with 
gentamycin not only acted as carriers of 
antibacterial drugs but also showed increased 
antibacterial efficacy against S. aureus by 
boosting the intracellular accumulation and 
dispersion of gentamycin Imbuluzqueta et al., 
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)2010). Thomas et al. )2016) reported that 
PLGA nanoparticles loaded with ciprofloxacin 
and calcium phosphate loaded with 
levofloxacin and nafcillin sodium inhibited S. 
aureus's ability to produce biofilms Bastari et 
al., )2014). Moreover, Turos et al. )2007) 
showed that the anti-S. aureus infection 
treatment efficiency of ciprofloxacin was 
enhanced by glycosylated polyacrylate 
nanoparticles. Improved drug bioavailability 
and encapsulation efficiency, controlled 
payload release, and targeted drug release at 
the inflammatory and infected areas are further 
advantages of polymeric nanocarriers Kumari 
et al., )2010). 
On the other hand, reactive groups may 
influence the stability of the polymer as well as 
the pace at which the conjugation process 
progresses Jijie et al., )2017). 
 
SLNs )Solid lipid nanoparticles) 
They have drawn interest as a possible thera-
peutic carrier for intracellular infections since 
they are biocompatible, biodegradable, and sta-
ble Xie et al., )2011). Xie et al., )2014). Anoth-
er theory is that SLNs can serve as a substitute 
for liposome and polymeric nanoparticles. For 
example, studies by Wang et al. )2012) and 
Han et al. )2009) shown how SLNs loaded 
with tilmicosin could potentially prevent S. au-
reus mastitis. Furthermore, our previous stud-
ies Xie et al., )2017); Li et al., )2019) demon-
strated that docosanoic acid SLNs loaded with 
enrofloxacin could successfully prolong the 
period of time that enrofloxacin accumulated 
and was stored inside the cell. In order to im-
prove enrofloxacin's oral bioavailability, stabil-
ity, and palatability, we most recently coated 
the SLNs with an enteric coating. According to 
studies by Kalhapure et al., vancomycin-
loaded SLN had a higher antibacterial activity 
against S. aureus than vancomycin that was 
free (2014). Furthermore, Wang et al. )2015) 
found that SLNs improved the antibacterial 
efficacy of florfenicol, lauric acid, and retinoic 
acid against S. aureus. Silva and colleagues, 
)2015). SLNs have several benefits, including 
as long-term stability, ease of manufacture, 
reduced toxicity, and the capacity to carry lipo-
philic and hydrophilic medicines. 
 

Nanogels 
Nanogels, which range in size from 20 to 200 
nm, are a novel and imaginative type of three-
dimensional cross-linked nanocarrier within 
the field of nanoparticles. These Nano-carriers 
are used in drug delivery to release 
pharmaceuticals via several methods, such as 
photo-isomerization at the target site, thermo-
sensitivity, PH responsiveness, and enzyme 
responsiveness, among others. Compared to 
other drug carrier systems, nanogels are 
favored because of their remarkable 
biocompatibility and essential 
biodegradability, which make them a very 
promising option for drug delivery systems 
Sultana et al., )2013). This prevents the organs 
from being overly filled with nanogels. 
Nanogels have no effect on the immune system 
since they are inert in the bloodstream and 
internal watery environments )Rigogliusoa et 
al., )2012). Furthermore, nanogels can be 
administered in a variety of methods, such as 
"oral, nasal, parenteral, pulmonary, intra-
ocular, and topical." As to Soni and Yadav's 
)2016) findings, nanogels are engineered to 
release the drug at the targeted site in a 
controlled and uninterrupted fashion with no 
adverse effects. The activity of bio-
macromolecules in their natural habitat can be 
positively enhanced and maintained by the 
addition of nanogels. One technique to express 
nanogels is through polymeric micellar 
nanogels systems. According to Sultana et al. 
)2013), these systems exhibit superior stability 
across the surfactant micelle, slower patterns of 
dissociation, and a longer withholding period 
for loaded medications. 
Many different types of nanogels are used to 
treat mastitis conditions; Krishna et al. )2027), 
for example, confirmed that nano copper gel is 
effective in treating clinical mastitis. 
Furthermore, red blood cell (RBC) nanogels 
have been shown to neutralize 
Furthermore, research was done on dextran 
cross-linked polyacrylamide nanogels loaded 
with zinc nitrate as an antibacterial agent 
against MRSA Malzahn et al., )2014). Silver 
nanoparticle loaded-dextran lysozyme nano-
gels demonstrated a stronger antibacterial im-
pact against S. aureus Ferrer et al., )2014). 
Additionally, S. aureus toxins are decreased by 
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PLGA nanoparticle-loaded RBC hydrogel 
Wang et al., )2015), toxins connected to 
MRSA in the extracellular milieu and promot-
ed macrophage phagocytosis of germs Zhang 
et al., )2017).  
 
Inorganic metal nanoparticles 
Antibacterial and antibiofilm properties can 
also be attributed to metal nanoparticles. For 
instance, subclinical mastitis was treated with 
silver nanoparticles (AgNPs) Dehkordi et al., 
)2011). They were thought to be an affordable 
substitute for an extremely expensive 
antimicrobial solution because of their 
bactericidal and fungicidal effects via a range 
of mechanisms, such as cell membrane 
damage, protein denaturation. The combined 
effects of antibiotics and AgNPs were also 
evaluated; for example, erythromycin and 
AgNPs were used to fight S. aureus Kazemi et 
al., )2014). 
Additionally, research has looked at the possi-
ble medical applications of selenium, a vital 
mineral with qualities. To halt the spread of 
MRSA infections, metal nanoparticles are the 
subject of extensive research Hibbitts & 
O'Leary, )2018).  
Furthermore, violacein nanoparticles were dis-
covered by Berni et al. )2013) to be more po-
tent than common treatments in combating S. 
aureus in the setting of mastitis illness. It was 
believed at the time that violacein was a com-
mon bactericidal agent. Yang et al. found that 
amoxicillin nanoparticles worked just as well 
against S. aureus )2009). Furthermore, accord-
ing to Garg and colleagues )2015a), lasalocid 
has demonstrated notable efficacy against mas-
titis-causing microorganisms other than MRSA 
and its nano-sized form spreads more swiftly in 
the udder than its micro-sized form. Because 
they are easier to create in a range of shapes 
and forms, have antibacterial qualities, and en-
hance medication stability, metallic nanoparti-
cles are therefore more beneficial. They do, 
however, have certain disadvantages, including 
the tendency to clump together fast, collect in 
the body after delivery, and release metal ions 
into the medium and cause cytotoxicity Jijie et 
al., )2017). Reducing or eliminating the cir-
cumstances that cause teat end exposure 
through infection dissemination is the greatest 

strategy to prevent recurrence of S. aureus 
mastitis once it has been treated Hala et al., 
)2024).    
 
Conclusions 
In dairy farming, staphylococcal subclinical 
mastitis is a complex disease that causes 
economic losses. The challenges associated 
with therapy include the quick acquisition of 
multidrug resistance, the potential for 
persistent, recurring infections due to biofilm 
formation, and facultative intracellular 
parasitism. Because of these, mastitis is a 
persistent problem and a subject of discussion 
for numerous research teams. 
It is evident that giving too many or inappro-
priate antibiotics to dairy cows during treat-
ment has a number of negative effects, includ-
ing raising the risk of antibiotic resistance, 
lowering antibacterial activity, and lengthening 
the time needed to check and extend antimicro-
bial function Oliver & Murinda, )2012). 
Therefore, the need to overcome the shortcom-
ings of conventional antibiotics is critical. The 
limitations imposed by antibiotics have been 
improved recently thanks to developments in 
nanoparticles with distinct physiochemical 
characteristics and functionalization Yah & 
Simate, )2015). In the past few years, a num-
ber of distinct nanoparticles have gained popu-
larity for treating Staphylococcal infections. 
We have provided a quick overview of the 
most recent research in this field. These nano-
particles exhibit greater intracellular absorption 
than other conventional drug delivery methods; 
they also prolong the drug's intracellular accu-
mulation and retention period, enhance its anti-
bacterial activity, lower antimicrobial re-
sistance, and prevent the formation of biofilms. 
Therefore, broadening our viewpoint to en-
compass the Nano world can aid in overcom-
ing and addressing the therapy obstacles asso-
ciated with S. aureus mastitis. 
 
Prospects for treating mastitis in the future 
We still need to do research and develop new, 
costly, yet safe Nano formulations that fight S. 
aureus mastitis in order to meet the therapeutic 
challenges associated with the illness. As was 
already mentioned, S. aureus can infiltrate 
tissues and reside there in certain 
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compartments. Therefore, the efficacy of the 
nanoparticles needs to be improved in order to 
effectively distribute the medication to the 
infected region and achieve colocalization 
between the pharmaceuticals and the 
intracellular S. aureus Xie et al., )2014). To 
improve tilmicosin's capacity to treat S. aureus 
cow mastitis, our research team combined in-
situ hydrogel technology with (SLN) 
technology to build a self-assembling 
tilmicosin nanogel Zhou et al., )2019). 
Additionally, we are developing different 
nanogels compositions to treat cow mastitis in 
an effort to advance our research. Further study 
on stimuli-responsive nanogels is also needed 
to improve a topical nanogel counter to 
medical mastitis. Drug administration via 
nanoparticles has great potential, but there are 
some obstacles that need to be addressed, like 
the medication's quick bodily elimination and 
the loaded drug's premature release before the 
intended lesion, and the phagocytosis of the 
immune cells. These problems can be remedied 
by integrating nanomaterials with natural drug 
delivery systems, such as bacteria, red blood 
cells, platelets, and stem cells, which are 
believed to be smart drug delivery systems and 
covering nanoparticles with their cell 
membranes. They allow the medication to 
build up in the bloodstream and cross cell 
membranes for a prolonged amount of time in 
order to stop intracellular infection. Apart from 
these advantages, stem cells could offer a 
feasible method for tissue regeneration and 
increase the effectiveness of treatment for cow 
mastitis in the future. By neutralizing the 
bacterial toxin, RBCs can help lessen the harm 
caused by the bacterial infection. Our groups 
have recently produced widely applicable 
protocols for Nano-crystal Nano-suspension 
and SLNs, which will be beneficial for their 
use. It is feasible to get nanomaterials from the 
lab to the clinic, but it requires patience, work, 
and regulations. 
Finally, there has been a lot of interest in 
creating Nano-robots that might be used for 
diagnostic and tissue restoration. However, 
these are cutting-edge research that have never 
been used before and could be eclipsed by 
artificial. 
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